Prints a comprehensive summary for objects of class summary.lm
or lm
, including model statistics, ANOVA table, coefficients, and optional tables (correlations, covariance, fits), followed by a five-number summary of residuals and the model call.
Arguments
- x
An object of class
summary.lm
orlm
.- digits
Minimal number of significant digits. Defaults to
max(5, getOption("digits") - 2)
.- symbolic.cor
Not implemented. Defaults to
NULL
.- signif.stars
Logical; whether to show significance stars in the coefficients table. Defaults to
getOption("show.signif.stars")
.- options
A character vector of optional summary tables to print (e.g.,
"v.correlation"
,"cov.unscaled"
,"correlation"
,"fits"
). Printed in the given order if present.- na.print
String to use for NA values in the tables.
- eps
Smallest positive floating-point value, used for formatting near-zero residuals. Defaults to
.Machine$double.eps
.- ...
Additional arguments (not currently used).
Details
The function prints summary statistics, ANOVA, and coefficients tables for a linear model in order, along with specified optional tables if provided. It concludes with a five-number-plus-mean summary of residuals and the model call.
For objects not of class summary.lm
, a default print method is used.
Examples
mdl <- lm(Sepal.Length ~ Sepal.Width, data = iris)
summary(mdl)
#>
#> Summary Statistics:
#> Value Performance Measure Err(Resids) Metric
#> Observations = 150 R-Squared = 0.013823 MAPE = 0.11751
#> F-Statistic = 2.0744 Adj-R2 = 0.0071593 MAD = 0.6749
#> Pr(b's=0),% = 0.152 Std.Err.Est = 0.8251 RMSE = 0.81958
#>
#> Analysis of Variance:
#> Deg.Frdm Sum.of.Sqs Mean.Sum.Sqs F.statistic p-value(F)
#> Regression 1 1.4122 1.41224 2.0744 0.152
#> Error(Resids) 148 100.7561 0.68078
#> Total 149 102.1683
#>
#> Coefficients:
#> Coefficient Std.Error t-stat p-value VIF
#> (Intercept) 6.52622 0.47890 13.6276 <2e-16 ***
#> Sepal.Width -0.22336 0.15508 -1.4403 0.152
#>
#> Signif.Levels: 0 ‘***’ 0.001 ‘** ’ 0.01 ‘* ’ 0.05 ‘. ’ 0.1 ‘ ’ 1
#>
#> Summary of Min 1Q Median Mean 3Q Max
#> Residuals: -1.556 -0.6333 -0.112 <3e-14 0.5579 2.223
#>
#> Call: lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
summary(mdl, options = c("correlation", "fits"))
#>
#> Summary Statistics:
#> Value Performance Measure Err(Resids) Metric
#> Observations = 150 R-Squared = 0.013823 MAPE = 0.11751
#> F-Statistic = 2.0744 Adj-R2 = 0.0071593 MAD = 0.6749
#> Pr(b's=0),% = 0.152 Std.Err.Est = 0.8251 RMSE = 0.81958
#>
#> Analysis of Variance:
#> Deg.Frdm Sum.of.Sqs Mean.Sum.Sqs F.statistic p-value(F)
#> Regression 1 1.4122 1.41224 2.0744 0.152
#> Error(Resids) 148 100.7561 0.68078
#> Total 149 102.1683
#>
#> Coefficients:
#> Coefficient Std.Error t-stat p-value VIF
#> (Intercept) 6.52622 0.47890 13.6276 <2e-16 ***
#> Sepal.Width -0.22336 0.15508 -1.4403 0.152
#>
#> Signif.Levels: 0 ‘***’ 0.001 ‘** ’ 0.01 ‘* ’ 0.05 ‘. ’ 0.1 ‘ ’ 1
#>
#> Summary of Min 1Q Median Mean 3Q Max
#> Residuals: -1.556 -0.6333 -0.112 <3e-14 0.5579 2.223
#>
#> Call: lm(formula = Sepal.Length ~ Sepal.Width, data = iris)