Skip to contents

All functions

lm_plot.4way()
Create a Four-Panel Regression Assumptions Plot
lm_plot.ac()
Plot Residuals vs. Observation Order (Autocorrelation Check)
lm_plot.df()
Augment Model Data for Diagnostic Plots
lm_plot.fit()
Plot Observed vs. Fitted Values to Check Linearity
lm_plot.infl()
Plot Leverage vs. Fitted Values to Visualize Inflential Observations
lm_plot.lev()
Plot Standard Residuals vs. Leverage with Cook's Distance Contours
lm_plot.parms()
Set or Retrieve Default Plot Parameters for Model Diagnostic Plots
lm_plot.qq()
Q-Q Plot of Residuals to Assess Normality
lm_plot.var()
Plot Residuals vs. Fitted Values to Assess Homoskedasticity
outlier()
Identify Outliers Using Boxplot Heuristic
print(<sumry.lm>)
Print a sumry Summarization for Linear Model Objects
print(<sumry.regsubsets>)
Print Method for Best Subset Selection (regsubsets) Objects
print(<table.sumry.lm>)
Print a Table from Linear Model Summary
sumry()
Summary Descriptive Statistics for BAQM
sumry(<default>)
Summary Descriptive Statistics for List or Data Frame
sumry(<lm>)
Method sumry to Summarize Linear Model (lm) Objects
sumry(<regsubsets>)
Summary for Subset Selection (regsubsets) Objects