Package index
-
lm_plot.4way() - Create a Four-Panel Regression Assumptions Plot
-
lm_plot.ac() - Plot Residuals vs. Observation Order (Autocorrelation Check)
-
lm_plot.df() - Augment Model Data for Diagnostic Plots
-
lm_plot.fit() - Plot Observed vs. Fitted Values to Check Linearity
-
lm_plot.infl() - Plot Leverage vs. Fitted Values to Visualize Inflential Observations
-
lm_plot.lev() - Plot Standard Residuals vs. Leverage with Cook's Distance Contours
-
lm_plot.parms() - Set or Retrieve Default Plot Parameters for Model Diagnostic Plots
-
lm_plot.qq() - Q-Q Plot of Residuals to Assess Normality
-
lm_plot.var() - Plot Residuals vs. Fitted Values to Assess Homoskedasticity
-
outlier() - Identify Outliers Using Boxplot Heuristic
-
print(<sumry.lm>) - Print a
sumrySummarization for Linear Model Objects -
print(<sumry.regsubsets>) - Print Method for Best Subset Selection (
regsubsets) Objects -
print(<table.sumry.lm>) - Print a Table from Linear Model Summary
-
sumry() - Summary Descriptive Statistics for BAQM
-
sumry(<default>) - Summary Descriptive Statistics for List or Data Frame
-
sumry(<lm>) - Method
sumryto Summarize Linear Model (lm) Objects -
sumry(<regsubsets>) - Summary for Subset Selection (
regsubsets) Objects