Package index
-
lm_plot.4way()
- Create a Four-Panel Regression Assumptions Plot
-
lm_plot.ac()
- Plot Residuals vs. Observation Order (Autocorrelation Check)
-
lm_plot.df()
- Augment Model Data for Diagnostic Plots
-
lm_plot.fit()
- Plot Observed vs. Fitted Values to Check Linearity
-
lm_plot.infl()
- Plot Studentized Residuals vs. Sequence with Influence Identification
-
lm_plot.lev()
- Plot Standard Residuals vs. Leverage with Cook's Distance Contours
-
lm_plot.parms()
- Set or Retrieve Default Plot Parameters for Model Diagnostic Plots
-
lm_plot.qq()
- Q-Q Plot of Residuals to Assess Normality
-
lm_plot.var()
- Plot Residuals vs. Fitted Values to Assess Homoskedasticity
-
outlier()
- Identify Outliers Using Boxplot Heuristic
-
print(<summary.lm>)
- Print a Summary for Linear Model Objects
-
print(<summary.regsubsets>)
- Print Summary for Subset Selection (
regsubsets
) Objects
-
print(<table.summary.lm>)
- Print a Table from Linear Model Summary
-
stat_desc()
- Summary Descriptive Statistics for List or Data Frame
-
summary(<lm>)
- Summary Method for Linear Model (
lm
) Objects