Skip to contents

All functions

lm_plot.4way()
Create a Four-Panel Regression Assumptions Plot
lm_plot.ac()
Plot Residuals vs. Observation Order (Autocorrelation Check)
lm_plot.df()
Augment Model Data for Diagnostic Plots
lm_plot.fit()
Plot Observed vs. Fitted Values to Check Linearity
lm_plot.infl()
Plot Studentized Residuals vs. Sequence with Influence Identification
lm_plot.lev()
Plot Standard Residuals vs. Leverage with Cook's Distance Contours
lm_plot.parms()
Set or Retrieve Default Plot Parameters for Model Diagnostic Plots
lm_plot.qq()
Q-Q Plot of Residuals to Assess Normality
lm_plot.var()
Plot Residuals vs. Fitted Values to Assess Homoskedasticity
outlier()
Identify Outliers Using Boxplot Heuristic
print(<summary.lm>)
Print a Summary for Linear Model Objects
print(<summary.regsubsets>)
Print Summary for Subset Selection (regsubsets) Objects
print(<table.summary.lm>)
Print a Table from Linear Model Summary
stat_desc()
Summary Descriptive Statistics for List or Data Frame
summary(<lm>)
Summary Method for Linear Model (lm) Objects